
GRADLE GROOVY DSL CHEAT SHEET
Basic Groovy language features

● it's a scripting language, so write code outside of a class and execute it

def myVar = 'Executing as a script'

println myVar //prints 'Executing as a script'

● it’s dynamic, so use def instead of providing a type (see above)
● semicolons at the end of a line are not required (see above)
● brackets are optional when passing parameters to a method, if the method has

at least one parameter

def multiply(first, second) {

println first * second

}

multiply 2, 3 //prints '6'

Advanced Groovy language features
● define closures using curly brackets {}. Closures are blocks of code that can

get passed around and executed at a later point.

def myClosure = {

println 'Executing closure'

}

myClosure() //prints 'Executing closure'

● if calling a method with brackets, if the last argument is a closure, it can go
outside of the brackets (see Gradle Groovy DSL for use case).

def executeClosure(times, closure) {

for (int i = 0; i < times; i++) {

closure()

}

}

executeClosure(2) { //prints 'Executing closure' twice

println 'Executing closure'

}

Gradle Groovy DSL
● anything you see in the build script operates on the Project object

version = '0.1.0-SNAPSHOT'

Above is a call to the Project.setVersion​(Object version) method.
Groovy knows to call setVersion even when we use =.

● when you see curly brackets, that's a closure. For example
Project.dependencies​(Closure configureClosure).

dependencies {

//some dependencies

}

● notice above we can leave out brackets when calling dependencies
● when calling methods with zero parameters, include brackets

repositories {

mavenCentral()

}

● you can put the last closure parameter outside the brackets

dependencies {

implementation('com.google.guava:guava:30.1.1-jre') {

exclude group: 'com.google.code.findbugs', module: 'jsr305'

}

}

Dive deeper
● try some Groovy in the IntelliJ IDEA Groovy console (Tools > Groovy console)

Alternatively, just add your Groovy code to build.gradle and run ./gradlew or
gradlew.bat.

● check out the org.gradle.api.Project API documentation to see what
methods you can call in the build script
https://docs.gradle.org/current/javadoc/org/gradle/api/Project.html

● browse Gradle source in IntelliJ IDEA by control-clicking/pressing F4 on
methods in build.gradle

ℹ️ to get the wrapper to download the Gradle distribution with source code, run
./gradlew wrapper --distribution-type=all

© Tom Gregory Limited https://tomgregory.com

https://docs.gradle.org/current/javadoc/org/gradle/api/Project.html

